SELF-SYNCHRONIZATION AND
SELF-STABILIZATION OF WALKING
GAITS MODELED BY THE 3D LINEAR
INVERTED PENDULUM MODEL

Qiuyue Luo

Victor De-Ledn-Gomez
Anne Kalouguine
Christine Chevallereau
Yannick Aoustin




Contents

Basic concepts

Motion of the swing foot

Condition of transition based on time

Condition of transition based on the position of the CoM
Condition of transition based on the position of the CoM
and feedback of its velocity

O OO0 0



LIP Model

Three assumptions:
1. punctual mass

2. massless beam

3. altitude is constant

* In order to explore simultaneously the self-synchronization and self-stabilization of
periodic orbits for many step length and width, a dimensionless dynamic model of
the pendulum will be used

X
(X,Y, 2y, X, Yo, 25)= (2, 28 2,2, 2, 24)
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Notation introduction

- State:
© Xiy1 = Xr — Xs . Xk+1 = Xk
« Vi ==Y + Y, . Yk+1 = -V,

. X=X 46X}
. Y=Y 46y}
o Xp =X 46X,
. Yo =Y +6Y,

Xi =X+ 6%
Vi =Yt 4oy
X =X~ +6X;
Yo =Y + 6V

- The sign (-) denotes the state before impact (at the end of a step) and (+) denotes the
state after impact (at the beginning of a step)



Synchronization measure

- The synchronization measure
L=XY —uw?XY

and the orbital energy

E, = X? —w?X?
E, =Y? - w?Y?

are conserved during a single support phase

- We can say that the solution in one step is synchronized if
and only if the synchronization measure Is zero.



Swing foot motion

- For general case, the pose of the swing foot at the end of
the step Is expressed as:
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a) the stride is imposed (1,1); b) error in position of the CoM is nullified; c) the general case



Phasing variable

- Definition:
A normalized variable monotonically increasing from 0 to 1 during one step

- Advantage:

To describe the desired trajectory of the controlled variables and to ensure
the joint coordination.

X, = X (@), Yy = Yi(®), 25 = 25(D)



Condition of transition based on time

- In many literatures, researchers define the change of support as
function of a reference duration of a step T*.

- With this method, the phasing variable is defined as:

— _t
¢ ==

» However, this method has been proven to be unstable is this paper (will be
explained later).



Condition of transition based on time

- Poincaré return map is used to analyze the stability

k’s=kD=D k_g:],kD:l

Jacobian of the Poincaré return map at the
fixed point is calculated numerically in the
coordinate system (X, ,Yy,Ly, Ky ), where
Ly, is the synchronization measure at the
end of step k and K, is the kinetic energy
at the end of the step k.

eigenvalues

Kk e K=k K = K
02 04 06 08 1
T

Simulation:
ks = kp = 0, S=0.4m, D=0.2m, z,,=1m, T=0.6s




Condition of transition based on the position of
the CoM

- The robot switches its stance leg when the CoM crosses the switching
manifold:

S = {(X,Y)|(X - X*")+C(Y —Y*) =0}

- which is presented by the red line in the figure below

stance foot



Phasing variable for self-synchronization

- Define the phasing variable:
®=aX+bY +cXY +dX?+eY?+ f

Knowing that:

(X, YT)=0
X, Y )=1 X" =X*"—CsY" =Y* 4§

Ca Xt Y T e XY T Hd( X 4 e(YT) 4+ =0
aX*THOY T4 XY T +d(X T e(YT) =1
—cC +dC*+e=0
—aC+b—cCY* " +cX* ™ —2dCX* +2eY*™ =0.




Phasing variable for synchronization

- There are six variables while the number of equations is only four. Take c=0
in order to reduce the number of terms. Then we get:
1
(X ) =Xt +C((Y)* -
C
(X7) = X+ + C((Y")* - Y*)

a=-d(X ) +X" +CY))+dCY" +

b=dC(X ) =X"+C((Y ) +Y")) +
e = —dC?
Xt +Crt
(X )+ Xt —C(Y")* +CY+

f=d(X)"+CY )X -CY")+

- Rearrange the equations:

M,y
b= —— M3 M.

M =X-X"4+CY -CY™"
My=X*"-XT+CY* —-CY*
Ms =X — X*~ +CY - CY*~
M,=X-XT—-CY+CYT.



Phasing variable for synchronization

- The choice of d will determine if the phasing variable will

d =-0.7

be monotonic
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Stability study for general case

- Since X and Y are coupled, only three varibles (X, Ly, K;, ) are taken as the
coordinate system of Poincaré return map. The expression of the Jacobian of
Poincaré return map in analytical form can be deduced.

B _k'D—l—aC’ks 4a0ks 0
N (T 84 e YOS
— @ — +(1—alC)(a+
J = J21 B (1—|—i£C)(O£—1) 0

i % X 1 |
- where

Jor — (kp+aCkg)(C—1+Cks—kp)w?
‘ 21 — 2(1+aC)Cks

The eigenvalue associated with K. is always 1, and this means that the
walking velocity cannot be controlled.



Change of support as function of the pose of

the CoM

3

*

*

parameters Jacobian matrix
0 0 0
Particular case | k¢ =kp =0 J= | o140 (C1teO)(ety)
2(1+aC) (1+aC)(1—a)
1 * * 1
. _ _ 14aCkg 4aCk - 0
Particular case | kp=1, kg<1 | oot enne (_1+3—Lc§%2f8)_(§aﬁf_m X
2 2C(1+aC)ks (1+aC)(a—1)
* * 1
. -1 2 1+4CEJC -1 0
Particular case | kp=ks=1 | ;_ | Cion? a0 op(ilaciasn |
o] (1+aC)(a—1)

1

Note: it can be proven that for the case 3, there is always more than one eigenvalues with a

norm greater than 1




Eigenvalues for different ko and ks

kp =0.5,ks =0 kp =1,kg =0

1N

kD—OOkg—

-l




Choice of C

- The manifold of C and T that makes the walking gait self-synchronized is
defined:

stn = {(C, T)|)\1,2(C, T) < 1, )\3(0, T) = 1}

« The manifold of C and T that makes the phasing variable monotonic for the
periodic gait is defined:

M := {(C,T)| min {$(C,T)} > 0}

0<t<T

Thus, in order to accomplish a
step, the values of C and
T must be located inside of the
intersection of Qsynand M
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Simulations
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- the walking gait is self-
synchronized but not self-
stabilized
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Condition of transition based on the position of
the CoM and feedback of its velocity

- The feedback of the velocity of CoM is introduced into the
condition of switching the stance leg, and a new switching
manifold is proposed:

S, = {(X,Y)|(X = X*" =)+ C(Y —Y*") =0}

stance foot X

where [ = k,(X*t — X)



Phasing variable for stability

» With the feedback of the velocity of the CoM along x axis, the position of the CoM at
the end of a step is modified

X" =X"=-Co+0LY =YY" 490
» Due to the condition that:

O(XT,YT)=0

O(X—,Y7) =1

v The feedback of the velocity when the CoM crosses the switching surface is introduced
into the function of phasing variable ®. The new phasing variable @ is:

(D L M1+dM2M3M4—dM4l+d(M3—Mg)M4l2
o Mo +1




Stability analysis

- Using Poincaré return map to calculate the eigenvalues as function of C and
kv for different T
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Choice of C

- In order to make the walking gait stable, the manifold of C and T is defined as

Qstab = {(Ca T)‘)\z < 1(?’ — 1) T an)}

1 7 1
0.8 1 08
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(a) k, =0.04 (b) £, = 0.08



Simulations
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- Simulation:
kD=1, kS=0, d=-0.4, C=3,
T1=0.6s, kv=0.08;
T2=0.8s, kv=0.04

- Self-stabilization is
obtained
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