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I. INTRODUCTION
Like humans, humanoid robots need to carefully coordi-

nate dozens of degrees of freedom for even the most basic
tasks, like standing upright or walking [1]. This challenge can
be tackled in a principled way with Quadratic Programming-
based Whole-Body Controllers (QP-based WBC) [2]: at
each time-step, an optimizer minimizes a cost function
that describes the task(s), under constraints that model the
dynamics of the robot interacting with its environment [3].
By formulating the problem as a quadratic program with
linear constraints it can be solved many times per second on
modern computers.

The most fundamental assumption of QP-based WBC is
that the model accurately captures the dynamics of both
the robot and the environment. Unfortunately, no model
is ever perfect and thus such controllers often fail when
a mismatch exists between the model and the real world.
Even with a good dynamics model extracted by CAD and
refined by dynamics parameters identification [4], [5], there
are elasticities, nonlinearities and coupled dynamics effects
which are impossible to model and measure accurately on a
complex platform like a humanoid, especially in presence of
multiple contacts [6]. The robot may also be damaged [7], or
some parts may be worn out. Overall, in practice, setting a
QP-based WBC for humanoids almost always involves long
hand-tuning sessions of the model and the cost function [8].

The fact that a WBC can fail when its model is imperfect
is not a problem per se: humans often fail when they have
imperfect information or when their “internal model” is
different (e.g., when they move under perturbations [9] or
after an injury). Humans, however, learn from their mistakes,
i.e. they adapt their behavior until they find a way to achieve
their objective. By contrast, a QP-based WBC with a fixed
model and tasks structure will keep performing the same
faulty behaviors.

Ideally, we would like to see humanoid robots that attempt
to achieve a task with their WBC, and are able to learn
from failures to improve the controller, until they achieve
the desired task. We would also like the learning process to
succeed after only a few trials (less than a dozen) and a few
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minutes [10], [11], [12], in particular because of the limited
energetic autonomy of robots. The main question here is:
“how to incorporate new information from the real world
into a QP-based WBC?”

II. DEALING WITH MODEL MISMATCH

Since a QP-based WBC assumes a perfect QP optimizer,
only two elements can be updated in such a trial-and-error
process: the cost function (i.e., the tasks) and the model
(i.e., the constraints). The most classic approach is to update
the model according to the data acquired during each trial,
i.e. perform a classic model identification [13]. Nevertheless,
identifying the model of a full humanoid is far from being
straightforward, as (I) identification can seldom be performed
with only proprioceptive sensors [4], and (II) it might require
exciting the system in specific ways which may be unsafe
for the robot [14]. More importantly, some effects cannot be
captured by tuning the parameters of classic models.

Our main insight is that even if a model makes inaccurate
predictions for some behaviors, this is not necessarily the
case for all the behaviors [15], [16], [7], [17]. Therefore
a learning process could discover where the WBC makes
inaccurate predictions and avoid such behaviors. In other
words, we can use an imperfect model if we know its limits.

III. OUR APPROACH

In the present paper, we introduce this idea in the QP-
based WBC framework, leading to a novel learning approach.
We define the model mismatch as the difference in the QP
cost calculated using the measured state and the estimated
state of the robot. When the robot attempts to perform a
task, we sample the robot’s state and observe the mismatch
for that state. We use these samples and observations to train
a Gaussian Process (GP) regression model of the mismatch.
For the next attempt, we modify the behavior of the QP by
using two intermediate waypoints. We optimize the position
of the waypoints in simulation by minimizing the tracking
cost of the task while minimizing the mismatch error, as
captured by the learned GP model. We re-attempt the task
in the real world using the new waypoints and gather new
data points for the mismatch model. This process is repeated
until the QP controller is able to solve the task.

In this way, the robot identifies the regions where the
model is incorrect and learns to avoid them. This new
episodic, trial-and-error algorithm enables QP-based whole-
body controllers to adapt in a few trials to unknown situa-
tions, like damage, and to imperfect models of the robot or
its environment.



Fig. 1. Different trajectories followed by changing the intermediate
waypoints in the QP task (green, left inset) and the progressively learned
mismatch model (yellow to red, right inset).

Fig. 2. Performance comparison of our mismatch learning method against
random search and bayesian optimization. Mismatch learning solves the task
consistently in only 5 trials.

IV. TEST CASE AND RESULTS

We show the effectiveness of our approach on a toy-
example (a particle moving in 2D), shown in Fig. 1 (left
inset). The task requires moving from the start (blue dot)
to the goal (green circle). The model, however, is unaware
of the mismatch (gray area) where the system dynamics are
different. In this example, a force in the −x direction is
applied inside the gray area.

The mismatch model is learned gradually as the QP con-
troller attempts to complete the task, as seen in Fig. 1. Once
a good mismatch model is learned, the optimal waypoints
guide the particle through the gap between the two mismatch
areas, thus improving the performance of the controller.

We compared our approach against two other methods: (I)
random search and (II) bayesian optimization. Fig. 2 shows
that our approach obtains consistently better results faster
than the other two methods. By learning the mismatch we
can solve the task in as little as 5 trials.

V. CONCLUSIONS

Preliminary results for the toy-example show that (I) we
can learn the mismatch area with a GP model, (II) we can

complete the task reliably by staying within the areas where
the QP model is correct, and (III) our method is very data
efficient, i.e. it solves the task in a few trials. Future work will
focus on implementing and testing the mismatch learning
algorithm on the iCub robot (simulated and real).

Overall, mismatch learning offers a new view of humanoid
robot learning that bridges the gap between modern whole
body control and machine learning. We believe it opens many
new research avenues to make humanoids robots that can
both benefit from sophisticated control methods and adapt
to unexpected situations.

REFERENCES

[1] S. Ivaldi, O. Sigaud, B. Berret, and F. Nori, “From humans to
humanoids: the optimal control framework,” Paladyn, vol. 3, no. 2,
pp. 75–91, 2012.
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