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I. INTRODUCTION

In the last few years, social robotics has been widely
developed with the problematic of making robots more
acceptable. An aspect which should not be neglected is the
social adequacy and especially the synchronization phenom-
ena which tend to emerge consciously, or unconsciously
when humans interact with each other ([1]). Humans require
their interaction partner to behave in an appropriate way in
order to connect, that is, a socially acceptable response in
accord with the social and human context is expected.

Waving is an important part of the gestural communica-
tion, creating a synchronous state where both partners wave
simultaneously. The rhythmic nature of this gesture leads
us to believe that it induces the same synchronization and
locking phenomena as other rhythmic movements.

Intrinsically rhythmic bio-inspired robot controllers, such
as Central Pattern Generators (CPGs), which also incorpo-
rate synchronization learning abilities, are able to produce
rhythmic movements and trigger the emergence of a syn-
chronization in the interaction.

In this work, plastic CPGs are implemented, i.e. CPGs
endowed with neural and synaptic Hebbian plasticity, in the
joints of the Pepper robot in order to achieve synchronization
with a human partner waving with a changing frequency.

II. THE ROBOT CONTROLLER

For the CPG we use the half-center model proposed by [2].
The CPG architecture and principle are represented on Figure
1. For the rhythm generator neurons, Rowat-Selverston (RS)
cells are used:
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with V the membrane potential and τm and τs time
constants, Af influences the output amplitude, while σf
determines whether the neuron is able to oscillate or not.
σs is a gain. For more details, refer to [3].

Since the RS model is a generalized Van der Pol oscillator,
Hebbian mechanisms designed to learn the frequency, input
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Fig. 1. CPG architecture employed. The input of the first CPG is the
optical flow detected, while the input of the second CPG is the output of
the first.

and output amplitudes and inspired by ([4]) can be integrated,
enabling it to synchronize with an external signal:
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with µ and λ, learning steps and ν and ξ, scaling factors.



III. RESULTS

The experiment can be divided into four observed main
phases (see Figure 2, the different phases are delimited).

Learning phase (from t = 1.7 s to t = 7 s): The human
starts waving slowly and the σs instantly decrease.

Slow waving - permanent phase (from t = 7.5 s to t =
21 s): The human partner is still waving slowly, σs is stable
around 12 which corresponds to an intrinsic frequency of 0.5
Hz for the CPG. Both CPG outputs are also in phase with
the optical flow detected.

Fast waving (from t = 21 s to t = 41 s): The human
partner accelerates the waving. The σs adapt and start
increasing. The new stability value is around 40 (intrinsic
frequency of 1 Hz for the CPG).

No waving (from t = 41 s to t = 50 s): The waving has
ceased. Both σS remain stable, showing that the CPG retains
the new frequency learned.
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Fig. 2. Above, evolution of σS : in red and blue for the shoulder CPG;
in green and purple for the elbow CPG. Note that the extensor and flexor
curves are merged for both CPGs. Below, in red, the optical flow detected. In
blue, the position command sent to the shoulder joint. In green, the position
command sent to the elbow joint.

A. Evaluation of Coordination

The Phase Locking Value (PLV) has been introduced by
[5] to measure coordination in brain signals.

Figure 3 represents the superimposed PLV for the ten
interactions. It can be plainly observed that though the
shoulder joint quickly coordinates with the optical flow (t
= 7 s), the elbow joint experiences a longer transition phase
before achieving coordination (t = 9.7 s). Similarly, at t =
20 s, when the waving frequency changes, the transition is
more distinct for the elbow joint than for the shoulder joint.
Waving in the higher frequency appears less stable and with
more variability than for the lower frequency, especially for
the elbow joint.

IV. CONCLUSION

CPG-based controllers endowed with plasticity mecha-
nisms are able to synchronize with an external visual signal.
This synchronization property enables motor synchronization
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Figure 3. Top, PLV for the shoulder joint and the optical
flow; Bottom, PLV for the elbow joint and the optical flow.
The PLV for ten interactions are superimposed.

which in turn, triggers the emergence of social synchroniza-
tion between the robot and the human. This was achieved by
analyzing the synchronization between the optical flow and
articular command values across ten different interactions
thanks to the PLV. Despite the obvious human variability in
the different interactions, results show an interesting coher-
ence with signals often overlapping. Thus, the coordination
observed previously is not merely due to chance but the
controller indeed triggers the emergence of coordination (the
PLV tends to reach 1.0) after a transitory phase where the
system adapts to the new input information.

REFERENCES

[1] E. Delaherche, M. Chetouani, A. Mahdhaoui, C. Saint-Georges, S. Vi-
aux, and D. Cohen, “Interpersonal synchrony: A survey of evaluation
methods across disciplines,” IEEE Transactions on Affective Computing,
vol. 3, no. 3, pp. 349–365, 2012.

[2] I. A. Rybak, N. A. Shevtsova, M. Lafreniere-Roula, and D. A. McCrea,
“Modelling spinal circuitry involved in locomotor pattern generation:
insights from deletions during fictive locomotion,” The Journal of
physiology, vol. 577, no. 2, pp. 617–639, 2006.

[3] P. F. Rowat and A. I. Selverston, “Modeling the gastric mill central
pattern generator of the lobster with a relaxation-oscillator network,”
Journal of neurophysiology, vol. 70, no. 3, pp. 1030–1053, 1993.

[4] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic hebbian learning
in adaptive frequency oscillators,” Physica D: Nonlinear Phenomena,
vol. 216, no. 2, pp. 269–281, 2006.

[5] J.-P. Lachaux, E. Rodriguez, J. Martinerie, F. J. Varela, et al., “Measur-
ing phase synchrony in brain signals,” Human brain mapping, vol. 8,
no. 4, pp. 194–208, 1999.


