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Abstract— We present an auto-encoder version of gated
networks for modeling inverse-forward transformations in the
visuomotor space of a robot arm. Gated networks learn
the motor correspondence between related images based on
multiplicative interactions. Used as an inverse model, each
output neuron encodes separately one motor transformation,
a motor primitive, which are combined for visual reaching.
Used as a forward model, the gated network serves then for
action-based prediction of visual motion for estimation of arm
location, aka motor ’imagination’. We apply its features in three
experiments including the learning of visual transformations
from motor primitives, the construction of the robot arm’s peri-
personal space and the control of the inverse-forward network
for reaching nearby objects. We discuss then the pertinence of
our network to related works and its relevance for modeling
the so-called gain-field neurons in the parieto-motor cortices
for visuomotor transformation, action observation and action
understanding of physical effects.

I. INTRODUCTION

In image processing, multiplicative or sigma-pi networks
have been emphasized recently because product images can
be viewed as energy functions that can be discriminated
better than deep networks on affine transformations for
example; see Fig. 1 a). Recently, this technique has been
applied extensively by Memisevic to the learning of optical
flow, of rotational shifts as well as of spectral filters and
spatio-temporal patterns for action recognition [1], [2], [3].
In these researches, the transformation from unseen images
is assumed to be hidden to the experimenter and is estimated
afterwards [4].

In the case of robotics, however, we know exactly which
actions have been performed and which effects have been
caused on sensors. In regard to image processing, the ex-
tra information of having motors –, that is, embodiment,–
can serve multiplicative networks to estimate better which
transformation has been performed between co-variating
sensorimotor signals (inverse model) and to predict better
how the sensory signals will evolve based on the learned
transformations (forward model); resp. the blue and red
networks in Fig. 1 c).

On the one hand, these multiplicative networks can be used
in robots to learn motor primitives to estimate the minimal
motor transformation necessary to control co-variating in-
coming sensory signals in one desired state (e.g. to move
in one visual direction) [5]. On the other hand, they
may serve to simulate motor activity in order to infer the
most plausible transformations performed from two or more
incoming variables; e.g., as during action observation [6].
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To our knowledge, only few teams proposed recently the
use of gated networks in robotics [6]; respectively Sigaud
and colleagues for categorization and retrieving of motor
sequences with the ICub robot [7], [8] and Pitti and col-
leagues for learning audio-visual integration in a robot head
for speech location [9] and visuomotor transformation in a
robot arm for body representation [10], [11].

In this paper, we propose to exploit these characteristics
of multiplicative networks also known as gain-field or gated
networks in robots for action-based prediction of visual
transformation, action recognition, spatial representation and
visuomotor control; see Fig. 1 c).

Fig. 1. Description of our architecture and its use for inverse-forward
predictions in robotics. (a) The transformation Z between two related images
at time t and t + 1 can be learned and estimated by processing the by-
product of the two images as an energy landscape, which is seen in (b) as
the intersection of the two images. The gated network can be used as an
auto-encoder to reconstruct back a predicted image; resp., the black lines
and the red lines in (c). In robotics, the estimated Z function corresponds to
the applied motor activity during hand motion for instance. This information
can serve to select the correct primitive Z in order to reach one desired target
in space (inverse model) and/or to estimate the location of the hand position
when a motor primitive Z is applied (forward model).

II. CONCLUSION

We have presented auto-encoder gated networks for learn-
ing visuo-motor transformations and inverse-forward mod-
els. Gated networks are based on multiplicative interac-
tion between related images for infering the corresponding
transformation. In robotics, these transformations can be
discriminated easily as they correspond to the robot motor
activity, which can be learned through supervised learning.
Used as an inverse model, the network predicts the most



Fig. 2. Action-based prediction of visual motion at two different locations.
The inverse gated network is able to discriminate the visual motion between
two related images X and Y through multiplicative function (left chart).
The prediction of the associated motor unit is presented in the activity level
of top chart and the corresponding motor command table is displayed in the
bottom chart. In a), motor unit #0 estimation of the visual displacement of
the robotic arm on the upright direction. In b), motor unit #2 estimation of
the visual displacement of the robotic arm on the upper-left direction. The
correspondence between the visual transformation and the associated motor
units are nonlinear (see text).

probable motor command within a repertoire of eight motor
primitives from its visual motion. The network performs few
motor errors and can be employed on reaching tasks. Used
as a forward model, the network uses its repertoire of eight
motor primitives to perform ’motor simulation’ in order to
geta density distribution of the robot arm’s spatial location;
i.e., its peripersonal space. The combination of the inverse
and forward networks permits to track objects within reach.
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