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LIP Model 

• Three assumptions: 
• 1. punctual mass 

• 2. massless beam 

• 3. altitude is constant 

𝑥𝑚 = 𝑃𝑥 +
𝑧𝑚𝑥 𝑚
𝑔

𝑦𝑚 = 𝑃𝑦 +
𝑧𝑚𝑦 𝑚
𝑔

 
Point foot 

• In order to explore simultaneously the self-synchronization and self-stabilization of 

periodic orbits for many step length and width, a dimensionless dynamic model of 

the pendulum will be used  
 

      

 𝑋
 = 𝜔2𝑋
𝑌 = 𝜔2𝑌

 

where 𝜔 is 
𝑔

𝑧𝑚
 

(𝑋, 𝑌, 𝑧𝑚, 𝑋𝑠, 𝑌𝑠 , 𝑧𝑠)=(
𝑥𝑚

𝑠
,
𝑦𝑚

𝐷
, 𝑧𝑚,

𝑥𝑠

𝑆
,
𝑦𝑠

𝐷
, 𝑧𝑠) 

Normalized 

variables 
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Notation introduction 

• State: 

 

 

 

 

 

 
• The sign (-) denotes the state before impact (at the end of a step) and (+) denotes the 

state after impact (at the beginning of a step) 

• 𝑋 𝑘+1
+ = 𝑋 𝑘

− 

• 𝑌 𝑘+1
+ = −𝑌 𝑘

− 

• 𝑋 𝑘
+ = 𝑋 ∗+ + 𝛿𝑋 𝑘

+ 

• 𝑌 𝑘
+ = 𝑌 ∗+ + 𝛿𝑌 𝑘

+ 

• 𝑋 𝑘
− = 𝑋 ∗− + 𝛿𝑋 𝑘

− 

• 𝑌 𝑘
− = 𝑌 ∗− + 𝛿𝑌 𝑘

− 

• 𝑋𝑘+1
+ = 𝑋𝑘

− − 𝑋𝑠,𝑘
−  

• 𝑌𝑘+1
+  = −𝑌𝑘

− + 𝑌𝑠,𝑘
−  

• 𝑋𝑘
+ = 𝑋∗+ + 𝛿𝑋𝑘

+ 

• 𝑌𝑘
+ = 𝑌∗+ + 𝛿𝑌𝑘

+ 

• 𝑋𝑘
− = 𝑋∗− + 𝛿𝑋𝑘

− 

• 𝑌𝑘
− = 𝑌∗− + 𝛿𝑌𝑘

− 
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Synchronization measure 

• The synchronization measure 

 

 

   and the orbital energy 

 

 
 

   are conserved during a single support phase  

 

• We can say that the solution in one step is synchronized if 

and only if the synchronization measure is zero.  
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Swing foot motion 

• For general case, the pose of the swing foot at the end of 

the step is expressed as: 

 

 

a) the stride is imposed (1,1);  b) error in position of the CoM is nullified;  c) the general case 
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Phasing variable 

• Definition: 

   A normalized variable monotonically increasing from 0 to 1 during one step  

 

• Advantage: 

   To describe the desired trajectory of the controlled variables and to ensure 

the joint coordination.  
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Condition of transition based on time 

• In many literatures, researchers define the change of support as 

function of a reference duration of a step 𝑇∗. 

 

• With this method, the phasing variable is defined as: 

 

 

 

However, this method has been proven to be unstable is this paper (will be 

explained later). 
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Condition of transition based on time 

• Poincaré return map is used to analyze the stability 

 

 

 

 
 

 

 

 

Jacobian of the Poincaré return map at the 

fixed point is calculated numerically in the 

coordinate system (𝑋𝑘
−, 𝑌𝑘

−, 𝐿𝑘
−, 𝐾𝑘

−), where 

𝐿𝑘
− is the synchronization measure at the 

end of step k and 𝐾𝑘
− is the kinetic energy 

at the end of the step k. 

 

Simulation:  

kS = kD = 0, S=0.4m, D=0.2m, zm=1m, T=0.6s 
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Condition of transition based on the position of 

the CoM 
• The robot switches its stance leg when the CoM crosses the switching 

manifold:  

 

 

 

• which is presented by the red line in the figure below 

•   
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Phasing variable for self-synchronization 

• Define the phasing variable: 

 

Knowing that: 
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Phasing variable for synchronization 

• There are six variables while the number of equations is only four. Take c=0 

in order to reduce the number of terms. Then we get: 

 

 

 

 
• Rearrange the equations: 
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Phasing variable for synchronization 

• The choice of d will determine if the phasing variable will 

be monotonic 
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Stability study for general case 

• Since X and Y are coupled, only three varibles (𝑋𝑘
−, 𝐿𝑘

−, 𝐾𝑘
−) are taken as the 

coordinate system of Poincaré return map. The expression of the Jacobian of 

Poincaré return map in analytical form can be deduced.  

 

 

 

 

• where  

•  

 

 
The eigenvalue associated with 𝐾𝑘

− is always 1, and this means that the 

walking velocity cannot be controlled.  
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parameters 
 

Jacobian matrix 

 

Particular case 

1 

 

kS = kD = 0 

 

Particular case 

2 

 

kD=1, kS<1 

 

Particular case 

3 

 

kD=kS=1 

Change of support as function of the pose of 

the CoM 

Note: it can be proven that for the case 3, there is always more than one eigenvalues with a 

norm greater than 1 
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Eigenvalues for different kD and ks 
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Choice of C 

• The manifold of C and T that makes the walking gait self-synchronized is 

defined: 

 

 
• The manifold of C and T that makes the phasing variable monotonic for the 

periodic gait is defined: 
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Thus, in order to accomplish a 

step, the values of C and 

T must be located inside of the 

intersection of Qsyn and M 



Simulations 

• Simulation: 

   kD=1,kS=0,d=-0.4, C=3, T=0.6s, 
S=0.4m, D=0.2m 

 

 

• the walking gait is self-
synchronized but not self-
stabilized  
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Condition of transition based on the position of 

the CoM and feedback of its velocity 

• The feedback of the velocity of CoM is introduced into the 

condition of switching the stance leg, and a new switching 

manifold is proposed:  
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where 



Phasing variable for stability 

 With the feedback of the velocity of the CoM along x axis, the position of the CoM at 

the end of a step is modified  

 

 

 Due to the condition that: 

 

 

 
 

 The feedback of the velocity when the CoM crosses the switching surface is introduced 

into the function of phasing variable Φ. The new phasing variable Φ is:  
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Stability analysis 

• Using Poincaré return map to calculate the eigenvalues as function of C and 

kv for different T 
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Choice of C 

• In order to make the walking gait stable, the manifold of C and T is defined as 
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Simulations 

• Simulation: 

    kD=1, kS=0, d=-0.4, C=3,     

    T1=0.6s, kv=0.08;  

    T2=0.8s, kv=0.04 

• Self-stabilization is 

obtained 
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