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Flexible cables (e.g., power cables, HDMI cables etc) are
commonly used in industrial/household environment. These
cables deform under force acting on them. Humans can
manipulate cables using two hands. Given a (reachable)
desired cable shape, a human is able to deform the cable
into the target shape. Such task is easy for a human to do
without knowing the internal dynamics of the cable (see Fig.
1). For the robot, it still remains a challenge.

Fig. 1: Cable manipulation by humans, red color lines mark
the desired shape

In the literatures, there exist some works on manipulation
of flexible cables. Nakagaki et al. and Zheng [1], [2] focused
on the cable insertion task. These approaches all utilized
a deformation model of the flexible object and considered
only the single arm. Kosuge et al. [3] studied dual arm
manipulation of a flexible beam using a finite element model.
Recently, Navarro-Alarcon et al. proposed several model-free
methods for manipulation of flexible objects [4], [5], [6], [7].

We draw inspiration from [7], and extend the work to dual
arm manipulation of an open contour, such as the shape of a
flexible cable. The objective of this work is to enable a dual-
arm robot to complete the task of deforming a flexible cable
to a desired shape through vision-based control without prior
knowledge of the deformation model.

A. Problem formulation

A dual-arm robot is used to manipulate a cable on a 2D
plane. The cable can be regarded as a system with unknown
dynamics that accepts inputs from the robot. There are in
total 6 inputs from the robot:

rrr = [ẋ1 ẏ1 ω1 ẋ2 ẏ2 ω2]
T ∈ R6. (1)

Each of the end-effectors applies 3 velocity inputs, re-
spectively: two translation velocities in the manipulation
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plane, ẋ and ẏ, and one angular velocity ω along the axis
perpendicular to the manipulation plane.
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Fig. 2: Control inputs

The shape of the cable is continuously observed by a static
camera perpendicular to the manipulation plane. The cable
shape on the camera image is represented as ccc = [uuu,vvv]T ,
where uuu and vvv are image coordinates of pixels sampled along
the cable. We represent the desired cable shape by ccc∗.

The problem is to use the control inputs rrr to drive the
cable from its initial shape ccc0 to the desired shape ccc∗ with
on-line estimated deformation model by visual feedback.

B. Feature parameters

Assume there are in total K samples of image coordinates
in ccc. The ith sample c(i) = [u(i),v(i)]T , i = 1,2, . . . ,K can
be approximated using Fourier series:

u(i) =
N

∑
j=1

[a j b j]

[
cos( jρi)
sin( jρi)

]
+ e

v(i) =
N

∑
j=1

[c j d j]

[
cos( jρi)
sin( jρi)

]
+ f ,

(2)

with
ρi = (i−1)

π

K
, (3)

N ≥ 1 is the order of the Fourier series.
We denote sss to be the feature parameters characterize (2):

sss = [a1 b1 . . . aN bN e c1 d1 . . . cN dN f ]T ∈ R4N+2. (4)

It will later be used in deformation model estimation and
control. We will show how we solve for sss given image data.

We can rewrite (2) as:

c(i) =
[

u(i)
v(i)

]
=

[
FFF(i) 000

000 FFF(i)

]
sss. (5)

In (5), FFF(i) are the harmonics terms defined as:

FFF(i) = [cosρi sinρi . . . cos(Nρi) sin(Nρi) 1] ∈ R2N+1, (6)



Using all K samples in ccc, we have:

ccc = GGGsss, (7)

with:

ccc = [c(1)T c(2)T . . . c(K)T ]T ∈ R2K ,

GGG =


FFF(1) 000

000 FFF(1)
...

...
FFF(K) 000

000 FFF(K)

 ∈ R2K×(4N+2).
(8)

Feature parameters of the shape can be solved by linear least
squares:

sss = (GGGT GGG)−1GGGT ccc, (9)

C. Local deformation model estimation

The feature parameters sss describes the cable shape. A
small movement of the robot will produce a tiny change
in the cable shape, hence on the feature parameters. From
this observation, at a given operating point, we are able to
linearize the deformation model as:

δ sss = QQQδ rrr. (10)

In (10)
δ rrr = rrrδ t ∈ R6, (11)

corresponds to the change in robot position with δ t being the
time interval and rrr being the velocity inputs of the robot;
δ sss ∈ R4N+2 is the change in feature parameters, and QQQ ∈
R(4N+2)×6 is the local deformation matrix relating the two.

For the ith element of sss, we can write:

δ si = δ rrrT qqqi, (12)

where qqqT
i ∈ R6 is the ith row of QQQ.

To estimate qqqi, we denote the current time as tm. Using
a constant sampling period δ t, within the time period (m−
1)δ t, we collect m consecutive data of δ si and δ rrrT while
the robot is moving:

σσσ i =


δ si(t1)
δ si(t2)

...
δ si(tm)

 ∈ Rm,RRR =


δ rrrT (t1)
δ rrrT (t2)

...
δ rrrT (tm)

 ∈ Rm×6, (13)

where

tk = tm− (m− k)δ t, k = 1,2,3, . . . ,m. (14)

Using RRR and σσσ i we have:

σσσ i = RRRqqqi. (15)

Then, qqqi can be estimated via:

q̂qqi = (RRRT RRR)−1RRRT
σσσ i. (16)

D. Shape servo controller

The differences between the initial shape ccc and the desire
shape cccd can be characterized by the difference between
Fourier coefficients of two shapes:

∆sss = sss− sssd . (17)

Using the estimated deformation model:

δ sss = Q̂QQδ rrr. (18)

We can use the servo control law from [7]:

δ rrr =−λ (Q̂QQ
T

Q̂QQ)−1Q̂QQ
T

sat(∆sss) (19)

where λ is a feedback gain and sat(·) is a vectorial saturation
function.

E. Experimental setup and result

The cable is attached to both end-effectors. A camera is
placed perpendicular to the manipulation plane to track the
shape of the cable during manipulation.

Figure 3 depicts one experiment. The red color line is the
target shape. In each figure, the initial and final shape of the
cable is presented in (a) and (d) respectively. Figure (b) and
(c) shows the intermediate shapes while reaching the final
shape.

(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Fig. 3: Robot experiment
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